Assessing Precision in Conventional Field Measurements of Individual Tree Attributes
نویسندگان
چکیده
Forest resource information has a hierarchical structure: individual tree attributes are summed at the plot level and then in turn, plot-level estimates are used to derive stand or large-area estimates of forest resources. Due to this hierarchy, it is imperative that individual tree attributes are measured with accuracy and precision. With the widespread use of different measurement tools, it is also important to understand the expected degree of precision associated with these measurements. The most prevalent tree attributes measured in the field are tree species, stem diameter-at-breast-height (dbh), and tree height. For dbh and height, the most commonly used measuring devices are calipers and clinometers, respectively. The aim of our study was to characterize the precision of individual tree dbh and height measurements in boreal forest conditions when using calipers and clinometers. The data consisted of 319 sample trees at a study area in Evo, southern Finland. The sample trees were measured independently by four trained mensurationists. The standard deviation in tree dbh and height measurements was 0.3 cm (1.5%) and 0.5 m (2.9%), respectively. Precision was also assessed by tree species and tree size classes; however, there were no statistically significant differences between the mensurationists for dbh or height measurements. Our study offers insights into the expected precision of tree dbh and height as measured with the most commonly used devices. These results are important when using sample plot data in forest inventory applications, especially now, at a time when new tree attribute measurement techniques based on remote sensing are being developed and compared to the conventional caliper and clinometer measurements.
منابع مشابه
Estimation of Tree Biomass at Individual tree, Sample plot and Hybrid Level using Drone Images
Two-dimensional image conversion algorithms to 3D data create the hope that the structural properties of trees can be extracted through these images. In this study, the accuracy of biomass estimation in tree, plot, and hybrid levels using UAVs images was investigated. In 34.8 ha of Sisangan Forest Park, using a quadcopter, 854 images from an altitude of 100 meters above ground were acquired. SF...
متن کاملA Comparative Study of Genetic Diversity, Heritability and Inter-relationships of Tree and Nut Attributes between Prunus scoparia and P. elaeagnifolia using Multivariate Statistical Analysis
By applying multivariate statistical analysis, this research aimed to estimate the heritability and find relationships between the vegetative and reproductive characteristics of Prunus scoparia and Prunus elaeagnifolia. Twenty genotypes of each species were selected randomly from cultivated populations and twenty-two traits including the tree, leaf, flower, nut and kernel attributes were measur...
متن کاملAccuracy and precision of measurements obtained from conventional cephalograms and CBCT scan in orthodontics linear diagnostic measurements
Background and Purpose: Due to the important role of imaging in the diagnosis and treatment plan in orthodontics, CBCT (Cone Beam Computed Tomography) images because of their three-dimensional nature, can minimize the disadvantages of two-dimensional images such as magnification, distortion, or superimposition. The purpose of this study was to evaluate the accuracy of conventional cephalograms...
متن کاملEstimating biomass of individual pine trees using airborne lidar
Airborne lidar (Light Detection And Ranging) is a proven technology that can be used to accurately assess aboveground forest biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings typical for loblolly pine stands (Pinus taeda L.) in the sou...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کامل